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HIGH-VELOCITY PENETRATION OF PLANE

SHAPED-CHARGE JETS INTO NONLINEAR MEDIA

UDC 539.43+623.562G. F. Savenkov

This paper reports results of metallographic analysis of metal samples cut from targets penetrated by
plane shaped-charge jets. It is shown that the plastic deformation due to penetration has a turbulent
nature and, in some cases, it occurs in metals with fractal structure formed after passage of the shock
wave running ahead of the jet. A penetration model is proposed that takes into account the nonlinear
behavior of the target material and the fractality of its structure.
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The high-velocity penetration of plane shaped-charge jets at initial impact velocities V0 = 2.5–3.5 km/sec
is accompanied by formation of a shock wave, which first runs ahead of the jet and then breaks up into an elastic
wave and a plastic wave. The motion of the shock wave results, in particular, in local overheating of the target
material and variations in its crystal and grain structures. Therefore, on most of the jet motion path, the jet
penetrates into the target material whose properties differ from the initial ones. Examination of a number of
targets from 12Kh18N10T steel and KhN75VMYu alloy penetrated by plane shaped-charge jets at initial impact
velocities of about 3.5 km/sec using optical, scanning, and transmission microscopy revealed special features of the
metal structure which indicate that the fractal structure formed after passage of the shock wave running ahead of
the jet.

Structural variations in the alloy are shown on a panorama of the plane of the sample parallel to the direction
of jet motion (Fig. 1). The sample is cut from the target at half-depth of the V-shaped cavern. These variations
differ in etching regions, whose dimensions and shape are also different. According to these differences, three zones
can be distinguished. The first zone (the zone of the largest plastic strains) of length ∆r1 = (0.8 ± 0.1) mm
apparently forms during motion of the shaped-charge jet and consists of two regions. In the first region adjoining
the cavern edge, whose dimensions do not exceed three or four grain sizes of the starting material, mixing of the jet
and target materials occurs together with fragmentation of the target material and formation of discontinuities in
it. In the second region of the first zone, fragmentation is accompanied by intense plastic deformation. The second
zone with a dimension ∆r2 = (1.1 ± 0.1) mm formed as a result of shock-wave passage; i.e., the jet penetrate into
the material with exactly this structure. Finally, the third zone corresponds to the initial metal structure with grain
sizes of (50± 25) µm.

The most interesting (from the standpoint of the structure of the material into which the jet penetrates) is
the second zone, which is an aggregate of strip structures oriented equally at an angle of ±45◦ to the cavern edge
and is, in essence, a group soliton consisting of 7–12 monochromatic bands. As is known, the occurrence of solitons
(solitary standing waves) is explained by nonlinear behavior of a medium. In the case considered, the nonlinear
medium has fractal properties, as can be seen on images of the grain boundaries and the strip regions formed by
intersection of slip microbands inside grains (Fig. 2) with increase in the microscope magnification and resolution.
In these regions, the average fractal dimension D determined by the method of [1] is 1.896.

In the case of a target from 12Kh18N10T steel, the dislocation–disclination structure of the sample in the
zone of shock wave propagation (Fig. 3) has the property of geometrical self-similarity. The dimensions of subregions
subjected to local reorientation are approximately equal to 0.01, 0.05, and 0.26 µm. The results of the divisions
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Fig. 1. Structure of KhN75VMYu alloy after penetration of a plane shaped-charge jet (×200).
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Fig. 2. Fractal grain boundary in KhN75VMYu alloy: (a) strip structures inside grains; (b) boundary
of a strip at increased optical magnification.

0.01 : 0.05 and 0.05 : 0.26 are 0.2 and 192, respectively, and, as is known, the geometrical self-similarity of the
objects is a classical feature of fractals.

The above data suggest that for some metals, the shock wave that arises from impact of a high-velocity jet
on a target and runs ahead of the jet promotes the formation of fractal structures in the target material. As a
result, the plane shaped-charge jet moves in a fractal medium with special nonlinear properties. Barakhtin et al. [2]
established that the most intense deformation and fracture processes are localized within three or four grains located
at the cavern edge. This is supported by the results of the present study. Barakhtin et al. [3] showed that plastic
deformation is the motion of an aggregate of material microflows and mesoflows having different velocities. This
conclusion is confirmed by the fact that the group soliton admits that on the phase plane there exist carrier paths
of plastic modes in the form of a separatrix — a curve that separates random carriers according to velocities [4].
If the material microflows or mesoflows move in the same direction but at different velocities, a zone of turbulence
(eddy flow), which also has fractal structure, forms on the boundary between these flows [4].
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Fig. 3. Fine structure of 12Kh18N10T steel (×12,000).

In a rigorous formulation, the rather complex solution of the three-dimensional unsteady problem of de-
termining the parameters of jet motion in a target becomes even more complicated in describing the penetration
process in nonlinear fractal media because the classical models of continuum mechanics are unsuitable for describing
their elastic and other properties. Thus, fractional derivatives and fractional integrals appear in the equations of
motion and conservation [5], and the physical properties of fractal materials are determined by dependences of
material density on its structure and dependences of elastic modulus on deformation scale [6].

To take into account the above-mentioned features of high-velocity penetration and to simplify the problem,
we use the modified hydrodynamic model of penetration from [3]; the fractality is allowed for by effective parameters
of material.

In the modified hydrodynamic penetration theory, the basic equation describing the stress balance on the
jet–target interface is written as

0.5ρ1(V − u)2 + H1 = 0.5ρ2u
2 + H2, (1)

where ρ1 and ρ2 are the densities of the jet and target materials, respectively, V is the jet velocity, u is the penetration
velocity, H1 is a parameter that describes the hardness of the jet material, and H2 is the so-called resistance of the
target material [7]. To solve Eq. (1) and the equations of the modified hydrodynamic penetration model, we need
to know the values of the parameters H1 and H2. These characteristics were analyzed primarily for axisymmetric
jets with velocities V ≈ 4 km/sec and impactors (long rods and anvil blocks) with velocities 1.5–.5 km/sec, which
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are close to the velocities considered in the present paper. Tate recommended a value of H1 equal to the Hugoniot
elastic limit pE of the impactor material and a value of H2 which is 3.5 times larger than the Hugoniot elastic limit
of the target material [8]. Chou and Flis [9] propose to use a value of H1 equal to the dynamic yield limit and a
value of H2 equal to 2.5pE . In the domestic literature, the difference H2 −H1 for shaped-charge jets is understood
mainly as the dynamic hardness of the target material [10] and it is assumed that the jet hardness can be ignored.
Ulyakov [11] believes that H1 and H2 are close to the corresponding Hugoniot elastic limits, except in the case
where the impactor and target materials are identical. In [7, 10], it is noted that from the viewpoint of physics,
H2 should be treated as dissipative pressure that describes energy losses due to elastoplastic flow, compressibility,
target heating, etc. It should be noted that the values of the parameters H1 and H2 proposed above ignore the
loading prehistory of the jet (impactor) and target materials (effect of shock-wave action), and, in essence, the
difference H2 −H1 is a fitting parameter in these cases.

In determining jet strength parameters, Savenkov and Vasil’ev [12] obtained values H1 = 400–700 MPa
(mean value H1 = 470 MPa) for M-2 copper, a mean value H1 = 520 MPa for St. 3 steel, and H1 = 210 MPa
for A-6 aluminum. The values of H1 obtained are close to the corresponding Hugoniot elastic limits and are not
negligible.

In determining H2, we shall take into account all above-mentioned physical features of jet penetration into
metallic targets, i.e., we shall treat this parameter as the resistance of the target metal to jet penetration due to
viscous friction between mesoflows and inside them, turbulent motion of particles of the medium in the intermediate
sublayer, and rotational motion of grains and their fragments. The rotation of elements of the medium is suggested
by diffusion of the target metal texture in the zone of the largest plastic strains (first zone) [3, 13]. It should be
noted that the rotation of elements of the medium, as well as their motion (slip), is primarily an accommodation
process contributing to the conservation of the continuity of the material.

In view of the aforesaid, the expression for H2 is written as

H2 = S1 + S2 + S3 + S4 + S0, (2)

were S1 is the stress of friction between mesoflows, S2 is the stress due to viscous friction of elements of the medium
inside a mesoflow, S3 is the turbulent stress, S4 the rotational stress, and S0 is the initial (taking into account
shock-wave passage) strength of the target material.

The friction stress between mesoflows S1 is given by the relation

S1 = µ1ε̇1, (3)

where µ1 is the dynamic viscosity of the material between mesoflows and ε̇1 is the strain rate between mesoflows.
The coefficient µ1 is obtained from the following expression [14]:

µ1 = ρ2 ∆u ∆h.

Here ∆u is the width of the particle velocity distribution in a mesoflow (fluctuating velocity in the nomenclature of
turbulent hydrodynamics, i.e., the change in velocity compared to the mean value) and ∆h is the mesoflow width.
The strain rate between mesoflows ε̇1 = ∆u/∆h. Substituting the expressions for µ1 and ε̇1 into (3), we obtain

S1 = ρ2(∆u)2. (4)

The stress S2 inside a mesoflow is due to the viscous drag of elementary plastic-strain carriers (dislocations).
Similarly to S1, it can be defined as

S2 = µ2ε̇2, (5)

where µ2 is the dynamic viscosity of the material inside a mesoflow and ε̇2 is the strain rate inside a mesoflow. The
coefficient µ2 is determined from the relation [14]

µ2 = αB/(b2Nm),

and the strain rate ε̇2 from the expression
ε̇2 = u/h ≈ u/h1.

Here α < 1 is a coefficient, B is the viscous drag of dislocations, b is the Burgers vector, Nm is the density of
mobile dislocations, h is the width of the zone of plastic strains, and h1 is the width of the plane shaped-charge jet.
Substituting the expressions for µ2 and ε̇2 into (5), we obtain

S2 = αBu/(h1b
2Nm). (6)
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The turbulent (S3) and rotational (S4) stresses are the most difficult to determine. Formally, we can write

S3 = µ3ε̇3, (7)

where µ3 is the turbulent viscosity and ε̇3 is the strain rate in the turbulent zone. The coefficient µ3 is obtained
from the dependence defined in [15] as

µ3 = λρ2ud

(λ is an empirical fitting coefficient). The dimension of the turbulent zone d is determined from the relation

d = 0.5βf(ρ21/ρ22)|u1 − u2|t3, (8)

where β is an empirical constant, f(ρ21/ρ22) is a dimensionless function, which generally depends on the density
difference outside and inside the turbulent zone and is normalized by the condition f(1) = 1, and t3 is the time of
interaction of mesoflows. The velocity difference of two neighboring mesoflows |u1 − u2| can be determined using
laser interferometry data on failure of pulsations on interferograms [16]: |u1 − u2| ≈ δu. Let ε̇3 ≈ 1/t3; then, with
allowance for (8), relation (7) becomes

S3 = γρ2u δu, (9)

where γ = 0.5λβ.
It should be noted that ∆u and δu are functions of the penetration velocity u; in this case, ∆u = f(0) = 0

and δu = f(0) = 0.
The stress S4 due to the rotation of grains and their fragments can formally be defined similarly to (7):

S4 = µ4ε̇4.

In this case, the dynamic viscosity µ4 is defined by the relation proposed in [14]:

µ4 = [(0.1ρ2E)0.5ωd0 − σ0]/ε̇4,

Here E is Young’s modulus, ω is the rotation angle of a grain (fragment) with mean size d0, and σ0 is the yield
point. As a result, we obtain

S4 = (0.1ρ2E)0.5ωd0 − σ0. (10)

The angular velocity of rotation of a grain (fragment) can be found under the assumption that the angular
momentum arises from scatter in the translational velocities of the grains (fragments). Then, provided that the
velocity scatter is equal to δu/2, we have

ω ≈ δu/(0.4r), (11)

where r is the mean radius of a grain (fragment) of spherical shape (the spherical shape explains the use of a value
of 0.4 for the coefficient).

Substituting (11) into (10), we finally obtain

S4 ≈ 0.8(ρ2E)0.5 δu− σ0. (12)

As S0, we use the stress value for which the target material with the structure formed after shock wave
passage enters a plastic state (Hugoniot’s elastic limit):

S0 =
1− ν

1− 2ν
σ0 (13)

(ν is Poisson’s ratio).
The coefficient ν is determined from the relation between Young’s modulus E and the bulk compression

modulus K:

ν = 0.5− E/(6K). (14)

For fractal materials, the elastic constants depend on the strain scale [6] and these dependences are written
as

E = E0λ
−m
1 , K = K0λ

−m1
1 . (15)

Here λ1 is the scale factor and m and m1 are the geometrical factors of elasticity. [The scale dependence of Young’s
modulus should also be included in relation (12).]
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TABLE 1

Target
material

ρ2 · 10−3,
kg/m3 E0, GPa

K0,
GPa

σi,
MPa

K∗,
MPa · mm0.5

D d0,
µm

ϕ · 10−2

KhN75VMYu 8.10 184 112 390 110 1.896 50 8
12Kh18N10T 7.71 146 124 255 25 1.810 75 2

Notes. 1) For both materials, m1 = 1.9318, m = 0.9675, and λ1 = 0.2; 2) The Young’s modulus E0 and the bulk
compression modulus K0 correspond to a temperature T = 400◦C.

Substituting (15) into (14), for fractal materials we obtain

νf = 0.5− E0λ
m1−m
1 /(6K0). (16)

Because m1 > m [6] from general considerations and λ1 < 1 (though this is not obvious), it follows that
for fractal materials, νf > ν, and according to (13), the value of S0 for them is larger than those for conventional
materials.

The yield point σ0 also depends on the shock wave generated after shock wave passage through the structure
of the material, and its determination is hampered because of the small dimensions of the witness zone of the
material. In this paper, we only estimate the effect of the fractality (nonlinearity) of the medium on the jet
penetration depth. For this, we consider the well-known Hall–Petch relation (or a similar relation for fragmented
media), which links the yield limit of a polycrystal and the grain (fragment) size:

σ0 = σi + K∗d
−0.5
0 (17)

(σi and K∗ are constants).
According to the Lie model [17],

K∗ = α1N
0.5. (18)

Here α1 is the proportionality constant and N is the number of protrusions on the fractal boundary of the grain:

N = α2L
D, (19)

α2 is the fitting coefficient and L is the mean length of the grain boundary.
Substituting (16)–(19) into (13) and taking into account that L ≈ πd0, we finally obtain

S0 =
0.5 + aλm1−m

1

2aλm1−m
1

(σi + ϕπ0.5DdD−0.5
0 ) (20)

[a = E0/(6K0) and ϕ = α1α
0.5
2 ]. Then, with allowance for (4), (6), (9), (12), and (20), relation (2), defining the

resistance H2, becomes

H2 = ρ2(∆u)2 +
αB

h1Nmb2
u + ρ2γu δu + 0.8(ρ2E)0.5δu +

0.5− aλm1−m
1

2aλm1−m
1

(σi + ϕπ0.5Dd
0.5(D−1)
0 ).

The process of high-velocity penetration has several stages [18]. At the first, unsteady, stage, jet penetration
proceeds without a noticeable plastic strain in the target [2]. Therefore, in the relation for H2, we can ignore the
first, third, and fourth terms and set λ1 = 1 and D = 0 in the fifth term. At the third, also unsteady, stage ∆u ≈ 0
and δu ≈ 0 during jet deceleration, and, thus, the first, third, and fourth terms are equal to zero.

Using the expression for H2, from Eq. (1) we find the critical jet velocity Vcr at which the jet penetration
into the target stops (u = 0). As a result, we obtain

Vcr =

√
2
ρ1

(0.5− aλm1−m
1

2aλm1−m
1

(σi + ϕπ0.5Dd
0.5(D−1)
0 )−H1

)
.

In calculating Vcr and H2, we also need to allow for the temperature dependence of the elastic moduli E0

and K0 because for most metals, the values of these characteristics considerably decrease even at a temperature
above 350◦C and the target heating due to shock-wave passage at the second and third stages of jet penetration is
not less than 400◦C.
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From evaluations for targets from KhN75VMYu alloy and 12Kh18N10T steel (parameter values are given
in Table 1) and a copper jet (ρ1 = 8.9 · 103 kg/m3 and H1 = 470 MPa), it follows that Vcr = 875 m/sec for
KhN75VMYu alloy and Vcr = 675 m/sec for 12Kh18N10T steel.

The obtained values of Vcr agree with available data, are in the real range of velocities, and are close to the
values of Vcr found in [3]. Generally, in spite of a large number of coefficients to be determined, this indicates that
the proposed model is suitable for describing the process of high-velocity penetration of plane shaped-charge jets.
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